Table of contents

The Conditional Expectation Function (CEF)

The CEF for a dependent variable \(Y_i \), given a vector of \(k \times 1\) covariates \(X_i\) (with elements \(x_{ki}\)) is the expectation of the population average (or an infinitely large sample).

E[Yi|Xi=x]

The CEF is only a function of Xi. The potential outcomes framework presented an important case of the CEF where Di0,1. If Xi is random then the CEF is also random, but a particular value of Xi can give a concrete answer to the CEF.

Assume that Yi with a conditional probability density function represented by fy(t|Xi=x) for Yi=t. Then

E[Yi|Xi=x]=tfy(t|Xi=x)dt

In the discrete case
E[Yi|Xi=x]=ttP(Yi=t|Xi=x)

Law of Iterated Expectations

E[Yi]=EE[Yi|Xi]

A proof of LIE for the continuous case

EE[Yi|Xi]=E[Yi|Xi=u]gx(u)du =[tfy(t|Xi=x)dt]gx(u)du =tfy(t|Xi=x)gx(u)dtdu =t[fy(t|Xi=x)gx(u)]dt =t[fxy(u,t)du]dt =tgy(t)dt=E[yi] In the discrete case, I start by noting that

P(Yi=yt|Xi=xj)=P(Yi=yt,Xi=xj)P(Xi=xj)

EE[Yi|Xi]=j=1dxE[Yi|Xi=xj]P(Xi=xj) =j=1dx[k=1dyytP(Yi=yk|Xi=xj)]P(Xi=xj) =k=1dyytj=1dxP(Yi=yt,X=Xj) =k=1dyytP(Yi=yt)=E[Yi] **The CEF Decomposition Property**

Yi=E[yi|Xi]+εi Under the assumptions that

  • (1) ε is mean independent of Xi, E[εi|Xi]=0
  • (2) ε is uncorrelated with any function of Xi

The CEF Prediction Property

Let m(Xi) be any function of Xi, the CEF solves

E[Yi|Xi]=argminm(Xi)E[(Yim(Xi))2]

Proof

(Yim(Xi))2=((YiE[Yi|Xi])+(E[Yi|Xi]m(Xi)))2 =(YiE[Yi|Xi])2+2[(YiE[Yi|Xi])×(E[Yi|Xi]m(Xi))]+(E[Yi|Xi]m(Xi))2 =εi2+2h(xi)εi+(E[Y|Xi]m(Xi))2 Taking the expectation we arrive at

E[(Yim(Xi))2]=E[εi2]+2E[h(xi)]E[εi]+E[(E[Yi|Xi]m(Xi))2] =E[εi2]+0+E[(E[Yi|Xi]m(Xi))2] =E[εi2]+E[E[Yi|Xi]2]2E[E[Yi|Xi]m(Xi)]+E[m(Xi)2]

Taking the first order conditions

(Yim(Xi))2m(Xi)=2E[Yi|Xi]+2m(Xi)=0 m(Xi)=E[Yi|Xi]

The ANOVA Theorem

V(Yi)=V(E[Yi|Xi])+E[V(Yi|Xi)] Proof

By the CEF decomposition property we know that

εi=YiE[Yi|Xi] Because εi and E[Yi|Xi] are by definition uncorrelated the variance of εi can be written as:

V(εi)=E(εi2)+E(εi)2=E(εi2) =E[E[εi|Xi]2]=E[V(Yi|Xi)]